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Abstract. A ring cavity system showing chaotic behaviour is constructed with three hybrid 
Michelson interferometers unidirectionally coupled to one another. This is for the first step 
in the study of spatiotemporal chaos. This system exhibits spatiotemporal chaotic bchav- 
burs  of the type described by Ikeda and Otsuka. It shows local bifurcation phenomena, 
such as pitchfork bifurcation and saddle-node bifurcation, as well as Hopf bifurcation. 
Also, an isola-type solution mode was found for the system and a target-shooting method 
was used to make,the system reach this isola mode. W e  have observed an interior crisis in 
this isola mode when there is a delay in the feedback signal to the nonlinear elements. 
Both the computer simulations and experimental work were performed to investigate these 
phenomena. 

1. Introduction 

There have been many theoretical as well as experimental investigations on chaotic 
phenomena such as pitchfork bifurcation [4], saddle-node bifurcation [ 5 ] ,  transcritical 
bifurcation, Hopf bifurcation [8] and isola-type phenomena [6]. Recently. Otsuka and 
Ikeda proposed a model system which can be used as a first step in studying these 
complicated spatiotemporal behaviours [ 1, 21. Their system is basically a ring~cavity 
system composed of many nonlinear elements spatially distributed and coupled to one 
another by feedbacking the output signal of each element to the next. Although there 
have been many theoretical works on this type of system, few experimental studies have 
been performed on it. This system is also an interesting system for a possible application 
as a logic or memory device [12, 131. In this paper we report on some results of an 
experimental study of chaotic phenomena performed with this system. For this purpose 
we have constructed an Ikeda-Otsuka-type ring cavity system with three hybrid Michel- 
son interferometers as nonlinear elements. The output of each element is fed back to 
the next one on the right-hand side and the output of the last one is-fed back to the 
first one, thereby forming a ring cavity. This system shows that it has two spatial modes 
of solution, one of them is an isola mode and the other is its symmetric mode. We find 
by computer simulation as well as by experimental study that the isola mode is formed 
through saddle-node bifurcation and the symmetric model through Hopf bifurcation. 
The effect of delay time in the feedback signal on the behaviour of the kola mode is 
also studied, as was done previously by Chem and McIver [6]. It is found that delays 
in the feedback signals make this ring cavity system undergo an interior crisis as well 
as a perioddoubling process. 
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Figure 1. A schematic diagram of the experimental set-up. PD, photodiode; A, amplifier; 
Mii, ith Michelson interferometer; B. buffer for the delay feedback signal; M. mirror: PM. 
piezc-ceramic buzzer and mirror; BS, beam splitter. 

2. Theoretical model and computer study 

2.1. Model 

The schematic diagram of our experimental system is shown in figure 1. Each nonlinear 
element is basically a Michelson interferometer. the output of which is fed back to a 
PZT that drives the mirror in one arm of the next lowest interferometer, and the output 
of the lowest one to that of the first one. In this way the system forms a ring cavity 
configuration. 

When there is a delay time T in the feedback signal from the kth element to the 
(k + 1)th element, the difference differential equations governing the spatially distributed 
ring cavity system in figure 1 are as follows: 

r d4k+'(t) + $k+ I([) = f ( $ k ) = 1 0 [ 1  + v k  cos(4k(t- T ) +  4kO)I  
dt 

(k=1,2,3 ,..., N). (1) 

Here k denotes the spatial position of the interferometers, i is the response time of 
each interferometer and V, is the visibility of the kth interferometer, Qm is the phase 
difference due to the unequal lengths of beam paths in the kth interferometer when 
there is no feedback, and 4k is the phase difference when there is feedback to the 
interferometer. 
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2.2. Bifurcations of the stationary solution 

The stationary solution 
( I )  as in [1,2] using periodic boundary conditions: 

of the (k+ 1)th element can be obtained from equation 

4:+ I = f ( @ X * )  6 L I  =.4: ( k = l , 2 , 3 , .  . . , N) (2) 

4: =f(&- I )  =f(f(. . . (4:) . . .) =f'Y@) (3) 

Sincef(q5f) is a nonlinear function, there can be many possible values of 4: for 
each kth interferometer. The set of values {@} =(bf,@.#.f,. . . ,&$I form spatial 
patterns, i.e. spatial modes. 

In this work we used a system of three nonlinear elements (N=3).  The stationary 
solutions q4: obtained from computer simulation as a function of input intensity I ,  are 
shown in figure 2. We have kept the visibility V, at 0.7 and the initial phase difference 
&, at 0 or n for all elements. The laser input intensity Io is used as a control parameter 
(or bifurcation parameter) in a range from 0 to 5. 

( k = l , 2 , 3  ,..., N). 

' "  T 

0 
0 1 2 ; lh 1, I I. ; 

Input Intensity ( Io) 

Figure 2. The stationary solution for the output of the system with three elements (full 
line, stable solution; dotted fine. unstable solution). 

The full line in figure 2 depicts the temporally stable stationary solution, and the 
dotted line depicts the temporally unstable solution determined by linear stability ana- 
lysis. When the control parameter is between 0 and 3.21 (=& in figure 2) the outputs 
of all three elements are same and are stable; however, the outputs are dynamically 
unstable in a small range of Io between 3.21 (=Ih)  and 3.28 (=Ii). For higher values of 
lo between 3.28 (=Ii) and 4.72 (=I.)@ has two spatial modes. One mode is a symmetric 
mode in which the outputs of all three elements are same but unstable. This mode is 
depicted in figure 2 as a single dotted line extending from single-valued solution curves 
of lower IO.  In the other mode of 4; the outputs of all three elements are different from 
one another and each one of them forms a separate closed curve in the 4; versus I ,  
diagram, as shown in figure 2. This mode is called isola [3, 6, 7, 1 I ] .  In this mode we 
find that the outputs always keep their cyclic relation in a certain direction, as was 
discussed by Chern and McIver [6]. If one element has its output value corresponding, 
to that in the lowest isola, the next one in the anticlockwise direction, for example, has 
its output value for that of the middle isola, and the last one that of the highest isola. 
From the linear stability analysis we have three eigenvalues 2. in the short delay 
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aI =- 1 - s 

a3=- 1 +---I s 95s 
2 2  

when a < 0 and 

a, =- 1 +s 

when a > 0. 
Where 

and SE”. 
In the symmetric mode of solution in the range Io larger than I h  (=3.21) the values 

of a, and /2, are pure imaginary and complex conjugate to each other for the stationary 
solutions, while the real part of A, is negative for them. This is the situation when the 
system undergoes a Hopf bifurcation. Figure 3 shows a Hopf-bifurcated signal obtained 
with Io at 3.6, which is larger than the Hopf bifurcation point Ih. The output of each 
element is in fact sinusoidal. The phase difference in between the neighbouring elements 
Q is 2 ~ / 3  due to the boundary condition. 
, The isola shown in figure 2 is created through a saddle-node (tangent) bifurcation. 

In our system the starting point and the ending point of I,, for the kola are 3.28 ( I ; )  
and 4.72 (Ic), respectively. At these extreme points the triple iteration f(f(f(4f))) of 
the nonlinear functionf(Qk) has a tangent line whose slope is 1 .  The real parts of the 
eigenvalues A2 and A, have the same negative value, and the value of II is zero at  the 
starting point Ii as well as at the ending point I.. There are two fixed points for a given 
value of lo in the isola. When a< 1, all three eigenvalues have negative real parts and 
the fixed parts are nodal points. When CT> 1, two eigenvalues have negative real parts 
whereas one has a positive value so it is a saddle point. Since the isola solutions are 
separated from the symmetric solution, as is clear in figure 2, they cannot be reached 
by gradually increasing the magnitude of the control parameter Io from zero. However, 
they can be reached by a target-shooting method, i.e. by choosing the initial values of 
the transit signal from the attracting basin of the isola. When this method is applied, 
the output values of the interferometer automatically go to the nodal points of the isola 
since the nodal points are the only temporally stable points in the isola. 
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Fipre 3. The Hopf bifurcation at 10=3.6 by computer simulation. (0) 4, after Hopf 
bifurcation. (b)  &+, versus &. 

2.3. Interior crisis 

When the feedback signals are~delayed in time, the stable solutions (nodal point) of 
the kola become unstable and turn chaotic through a period-doubling process. The 
basin of this chaotic regime is enlarged as the delay time becomes larger, while the 
unstable solutions do not change their values. Eventually the basin,of this chaotic range 
touches the unstable points. and the interior crisis takes place with a sudden expansion 
of the attracting basin from the kola region to the full region which contains all three 
isola regions, thus developing a full-range chaos [6,8-IO]. Figure 4 shows this colliding 
phenomena (interior crisis) in the region 10’4.07 when the normalized delay time (T/  
r )  is 1. Note that initially forbidden regions between the kola curves are filled with 
chaotic solutions after the interior crisis takes place. We also have other expanded 
chaotic regimes of nodal points in the middle of the kola (I-< Io<Icr), but they do not 
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Figure 4. The output solution when the system shows the interior crisis of isbla. The normal- 
ized delay time (T / r )  is 1.0 (computer simulation results). The dotted line is the unstable 
solution branch. 
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Figure 5. The Hopf bifurcation of symmetric solution, (a) The time behaviour of the  Hopf 
bifurcated signal. ( b )  The power spectrum of the Hopf bifurcated signal. (c) wrsus 
&. 



A ring cavity system 3057 

collide with the saddlepoint branch even with a very large delay time, and we have 
isola-type chaos in this region [6]. 

3. Experimental results 

As is shown in figure 1 our experimental system is basically a ring cavity system made 
of three nonlinear elements coupled to each other with delayed feedback. Each nonlinear 
element is a hybrid Michelson interferometer. The output of each interferometer is 
detected by a photodiode, and the signal is then amplified and fed back to a buzzer 
(SAT 1050, Sonitron Co.)  mounted on a mirror on one arm of the next interferometer, 
thereby varying the output of the interferometer nonlinearly. The delay time of the 
feed-back signal is varied by controlling the transit time of the transmitting signal in 
the buffer. The light source is a 5 mW He-Ne laser (Uniphase Co.). We kept the 
visibility Vk at  0.7i0.03 and the initial phase difference & a t  1r*0.05 for all elements, 
and the response time 7 of each element was measured to be 4.08 f 0.08 ms. 

Figure 5 shows the output of one of the interferometers, when lo is larger than Ih 
(=3.21). It is a typical signal which a system gives after Hopf bifurcation. It is very 
similar to that of figure 3. The Hopf bifurcated outputs are found to he sinusoidal and 
to have 2n/3 phase difference between neighbouring elements as shown in figures 5 ( c )  
and 5(d ) .  The spectrum of q5*(f) shown in figure 5(b)  tells us that &( I )  has a reasonably 
good sinusoidal functional form. 

Figure 6. The trace of the output in the system in the kola region. This 
condition is reached by the target-shooting method. The target-shooting 
method with initial values (+,,+>, &)=( l .4 ,3 . l , 6 .0 )  for ( n )  no delay 
time and ( b )  T / r = I .  
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Figures 6(a) and 6(b) show the tracing of the outputs obtained by the target- 
shooting method when the system is in the isola mode. In figure 6(a), which shows the 
case when the system has no delay in the feedback, the output values V,, V, and V, 
correspond to the stable solutions of the lowest, middle and uppermost kola curves,. 
respectively, in figure 2. When there is a delay time in the feedback signal, the output 
of each element becomes chaotic as the delay times increase. When the normalized 
delay time is increased up to I ,  the chaotic basins finally touch the saddle-node points 
in the range of lo from I, to I., and this chaotic region expands to the full region V, 
to V, of the three isolas. This is direct evidence of the fact that the interior crisis has 
taken place. The experimental results of the crisis are similar to that of the computer 
simulation of figure 4. 

4. Conclusion 

We have constructed a ring cavity system composed of nonlinear elements coupled to 
one another with a feedback signal. With this system we have investigated some local 
bifurcation phenomena. Two spatial modes were found to exist in this type of system, 
one of which is a symmetric mode of solution and the other is its isola mode. A Hopf 
bifurcation is observed in the symmetric mode and a saddle-node bifurcation is observed 
in the kola mode. Hopf bifurcation occurs when the two characteristic eigenvalues have 
a complex conjugate relation and the third one has a negative real part. The isolas are 
born through saddle-node bifurcation, and we have found that one can enter the isola 
region by using the target-shooting method. It has also been shown experimentally as 
well as by the computer simulation that the isola-type chaos is terminated by an interior 
crisis when the delay time in the feedback is increased. 
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